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time t = 0., The moving frame at time t 18 obtained by applying a rota= ' ’
tion X(t) to the fixed frame, and X(t) satisfies the differential b
equation X(t) = 0(t)X(t), with X(0) = I, = the identity mmtrix; Q(t) :

" necessary to mmte the matrix differential equation, or equ:l.vaimt];, a

!0:1 the paramstrization of the three.dimensiomal rotation

_ 8448 |
| — Yldoe-/ o
e WAsA 757548,
1. Introduction. T T OTs 846 gk B0, ?o,_;-,{ T

The pmmn of yaremetrizing the group of fotatiom of Euclidean PR ’_'-'f.

3-space has been of m:ist_‘sime 1776, vhen Euler first shoved that R .
this group is itself a 3-dimensional manifold. A primary spplication o
of such a paremetrization occurs in the integration of the equations of |
moticn of & rigld body, To describe the criemtation of the boly relative . _
toitleenterofnu,wumsiventvoaetlotm:ftmu';orthogoml' "
unit vectors, or fremes, one frame being attached to the. body and moving *:,
with it, the other being constant and coinciding vith the moving frame at 3

15 defined by the relstion A(t)y =y X o(t) for all 3-vectors v, where ..
o(t) is the angular velocity vector. We assume 0(t) 1s Ymown, so iti1s

system of nine scalar equatioms, to obtain X(t). However, if it 1s possible

*IMis research vas supported in part by the United States Air Force through
the Air Force Office of Scientific Research, Office of Aerospace Research, ,
under Contract No. AF 49(638)-1242, in part by the Natiomal Aercnautics and
Space Administration under Contract No. NASw and in part by the Office

of Naval Research under Contract No. Nonr-3693(00)e o
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to represent X(t) by a set of less than nine nnuteri, then the given
systen is equivalent to a systea with fewer than nine scalar equations,
and the problem may be simplified. |

In this paper we show why it is topologically impossible tohave & .

global J-dimensional paiamtnution without singular points fot the m-
tion group. This is an elementary topological fact, and is a very special

meatmobdom.comnmtonrmmr's theorem on the invariance of damain. '
We also point out that, uthm.uhnoptahmdmmwthtﬁieuthemm .

number of parameters vhich suffices to represent the rotation group in a

1-1 global manner, the so-called “"quaternion method" of parametrizing the
group in a 1-2 way, using % parameters, is sufficient for practical purposes.
In eddition, three 3-dimensional parametrizaticns, as vell as Eopf's method

'ofmihgsmhrl,uem

This paper 1s aimed primrily st those who have been led by Aheir

_ involvement with the practical applications of this problem to wonler if there

were not a va.y to improve the present methods of parametrizing rotations
without adding redundant parameters; while the ansver is negative, it is
possible, by adding only one redundant parameter, to obtain a method of re-

. presenting unrestricted rotations, which leads to simpler differential equa-

tions than any of the other methods presented.
The author is grateful to Dr. R. E. Kalman, of RIAS, for suggesting
that this peper be written, as wvell as for mny belpful conversations.
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2 bllotation and preliminaries, : !
 We stall use X to dencte the gset of complex 2 X 2 matrices of , 3

a b 1 o\ 1 o\ 2

the fom K = - ;t-hngnmux-i y =% s 1
S @ o 1 0.4} .l

1.0

| o 1 0 1 | oo !
K =4 , x’-i » Ve see that K 1s a M-dimensional S
< 0] . : TR
associative non-commrtative division algebra over the real mmbers, and the e

.mp.em aoxoq.alxl-l»azkzi-a’x) outo i(ao'&ali-b%j-l-a’k) is | '
en iscmorphisn of X with the qusternions, where 1, J, k bere represemt ||
the usual basis for the quaternions. The determinamt of K 18 the square B
of the quternion norm, U will stand for the subset of K of determinant ;'
1, and K, tbe subsct of trace sero. The elemnts of U are Just the 2x2 -

ccnp]umtsrymtneelotdetem.mntl,lo U ucm,lnd. U is

topologi.ed];equivﬂmttothemtsptcnin !k, simeanye]gmntot ¥
ndthefon

A

PR, P

mn  wtim

o e Lpeye,

~uy + 1u, Y, - iu,

vith zuﬁ-l..xo 1a spanned by the set Q = (K, Ky Kg). For fixsd ue T,
x € K, define linearmsps of K, 1into itself by T (k) = wai, ama

ey maen ———

A(x)-n -xK, forany k€ K. The mtrices of I, and A vithrespect
to Q will be denoted by y(u) and 8(x), respectively.

The rotation group will be denoted by R; it consists of those orthow ‘|

gonal 33X 3 mtx:l.cerwithdetenimubL I, amd O, windesigntethe

e

1dentity and zero matrices, resp., of dimension ns' the subscript will be .
anitted except when confusion is poesible, mtmquseqttnctorcr_ .
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matrix will be indicated by a prime, e.g., x' is the row-vectar obtained
by transposing the column-vector x. For any matrix A, Tr A denctes the
trace of A.

'mmmamrmmmmum.tomanun_ |

appeal in a later section, is stated as follovs, and is proved in Burewics

and Wvallman [2]: If A and B mhomemomicm‘beetloftlmm
spwe!‘md&hoyan,then!hopn.

3. The topology of R. . ‘
The matrix y{u) of I with respect to Q 4s easily seen to bs

g og e ey ) 2+ wm)
2 2 2

2mm +um) v rd - 2w tum) |
2wyt ) Amprum) g g -G

et bn b n < e g

vhich is orthogomal for all u € U, and has determimant 1. Also, for wu,. v, -
« U, r(a)r(v) = y(wv), so r is a group homomorphism, Since v 1s can-
 timous, end U is compact and cammected, Y(U) is & compact commected :
‘subgrowp of R. The cnly compact comected subgroups of R are known to be
I, B, and the groups of rotations about a fixed axis. Since v(U) leaves
no axis fixed, 7(0) =R. Note tiat v(u) = v(v) 1f and only if u-}v,
80 y i3 a two-to—ome map of U omto R. Recalling that U is topologi~ :
cally a 3-sphere, wo see that R is topologically equivalent to the sphere :
vith antipodal points identified, that is, yrojective 3-space. /
/- A @

‘ i R : x
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rotm.l-xglnmmtmatmottumummum
k parameters, it is necessary to embed the rotation growp R in the
Fuclidean space EY, that is, to find a differentiable 1-1 mep with
&4fferentiable inverss vhich carries R imto E, and use the imgs poimts
as representatives of the rotation matrices. | _

Since R 1s a 3-dimensicnal manifold, each point r bas a neighbore
hood U, vhich 1s homecmorphic to an open subset of ‘E°. If there were a
homeomorphism b of K imbo ‘B, then h(U) would be open in B, by
Brouver's theorem, so h(R), being the wnion of all B(U) for reR,
would be open in E°. But R 1s comgact, and L{R), boing tbs comt
image of & campact space, would be compact. Ilsucvenm_ﬁctthtm
EmndmmcMmmnemt-M,mthm'mmtmm:
honeomorphism, ' o |

The impossibility of embedding K topologically in E vas first
proved by H. Hopf in 1940 [1]. nnprootuhaseaonumndggottho
homology ring of projective 3-epace, and will not be incluled here. It is.

possible, however, to embed R in 85, as Bopf showed, and we shall examine

this embedding in the next section.

h. Five-and-six dirensional parametrizations.

An element of - R 1s-determined when its first two columns are speci=

fied, since the third columi 1s the cross-product of these two. 'Thus the
six-vector obtained by vertical J\#taposition of thege 'tvo columns ‘seml 'I;o
panmtﬂuthemmgmmhlmr. 80 if XER, l.nd xo denctes
the 3x2 mtmowwummtmmteohmot X, tben the |
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o

differential equation X (t) = a(t)x (t) 1s equivalent to the egmation
X(t) = a(t)X(t), but contains only € scalar variables.

et x = (11, Xor Xzp Xy X5 xs)'. be the}col\mvectbr represent-
ing the first two colums of the mtrix Ly vhere X € R. -Then w

2 5%\
bave the identities x'x - 1, x J’ix =0, i= 1,2, vhere ‘1" ,
% I %

and ‘2' . Binee x‘x-l,‘ theaet )(ofnlpointssa.tiaty-

5o

:I.nsthe/above conditionlu.containedinthemtsphem B’ in 36. n' a

1s any point of 87 not in N, e can project 8 « (a) stereographicslly
onto the hyperplane orthogonal to a, and thus obhsinanenbeaungor %
which is topologically equivalent to R, in E°. | .
!Bodothnexpncitly,ht ) 4 bes.5x6 ntr.l.xvitﬁ Ya = 0,
W'-Iﬁ. Then V'V 4is the projection along a vo:rbo-thesubep.eect-ls»

_orthcgcmlto &, For x €M let y-vx/(l-a'x).v‘m.tl represents the

point which 1s the intersection of the line joining x and & with the -
hyperplane orthogonal to a. It 1s defined forall x € M, since the denoe -
minstor vanishes coly if x =8, but & f M. The correspondence is 1.,

forif y 1sa Sevectar, then V'y 15 orthogomal to &, and the lime

Joining V'y 1is orthogonalto a, and the line joining V'y amd & inter-

Wy - 1)
sects the it spbere in & single point x, where x = ATZ=1) o ovy

If xe€ )M, then y satisfies the equations a'J Alte & 1)2 + yytyg, (Y'Y - 1)‘ o

+ hy'VJ’v'y-O, 1 =1,2. We nov bave the Swvector Y sa:tism.ngthatw
eqmtionsa.bave representing & point of - R mal-d.mmer,andwmhto
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find the differential equatiocn satisfied by y, if % = Ax, vhe_n_v
a : _ »
A= s A' +A =0, Differentiating the equation for y above
0’ ] .

vithnspeetto t, wom

¥

o doswt s - .-

! -&'x)ﬁ'l‘!&'ilﬁ ) 1l
. (1_“‘) | i(vr+1)(7*:-)t - '

- GO’y - DI - 7')Wae 4 WV,

The resulting equation for y 41s clearly not as simple as the origiml
linear equation for x, and there is no apperent advantage in the reduction -

e

-

in the mmber of scalar variables by this method. IS 1s possible that an eme

bedding in 2 may be obtained vhich leads to a simpler equation for Y. ' ,

P

| Thds paranetrisation 1s primarily of interest becsuse it wes the mmllest |
poesible ‘mumber of scalar varisbles for an everyvhere defined, 1-1,“cotine :
uous represenmtation of R, and because the given embedding 1s thé most' i - o
obvious and probebly the simplest vhich can be cbtained with five parameters.

5. The quaternion method.

As we saw in Sec. 5’, there 18 a 2l correspondence 7 between the ~
quaternions of unit norm and the elements of R. Given the differential equa= ..

P PP

tion i(t) = 0(¢)X(t) in R, we can determine a differential equation . , 9 : i
8(t) = o(t)u(t) in U such tst v(a(t)) =X(t), anlwe now indicate how :

this is done,

I
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‘ 8-
let “'“1"1;’“2"2*“)"3‘30-' and consider Aa ucﬁng.on xo.'-
The matrix of Aa with respect to the basis Q is |
I A
o 12
f Lolt)= [ w0 o(t) |,
| \(tﬂgft)  wy(E) 0/

3
o) = - T aylthey

then A =-0. If u(t) 1s the solution of #(t) = o(t)u(t) such that

u(0) = I, it 1s easily seen tiat u(t) € U, since oft) € K. Also, far

any fixed K€ K, f‘n(x) - (wul) =t - um'a'fm'a'-c(um ) - (wa Yo

= -4 (r (K)). Tt follows tiat if X = y(u), the matrix of I, with respect
to Q, then X =0X, amd T thmmpeao]ntiomof &-ou oato solutions
of X=ox. If u(O)-I, x(o)-r(n(o))-I,-sotlndeaindpq.rticﬂu

Mt g v

PRI SRS el

-~

N 20n® e Beat g e 6o PR W i % 2 eme e e B

‘ ‘solution is obtained, _ ,
mtemottbmlpnmeters “1’”2’“3"# a.ppearl.nginu, the -
-dJ.ftennthleqmtion A =ou becomes '

- ’[ ) . :A ‘I :?

L 3 -
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Tt should be noted that the origimal linear equation is transformed into a

linear equation; this was not the case with the 5-dimensional method, so
~ this metﬁpd 18 obviously far swerior to the previous one. Although the

rarametrization is not 1l-1, mo difficulties arise, since y 1is a local __
homecmorphisa. :

It would be reasanable tomWritnmtumsimwom
a representation of this form, that 1s, one-to-many, using only three p.nq
metei-s, but still posgessing the property of being a local hcmeomorphisa,
andhsvingnoainguhrpoﬁbs. The answer is no, for this would force the
parameter set to be a “covering space” of R, and it is known that the
S-sphere, which cannct be represented topologically by less than b yarameters,

48 the only covering space or.'R, except for R itsgelf,

6. Three-dimensicnal pa.mmi:iutim.‘ _ ,
As we showed earlier, no 3-dimensional mtm;tion can be doth

global and non-singular; however, ihenanatlmtthieea\hhmetnn-, )

tions in common use, each of which has certain advantages, and we present
them here, ' o

D T ™ . n
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The Euler angles are defined in many different ways, depending on
the problem 4o be solved. The definition adopted here is comveniemt for
~ problems involving orietrba.tion of aircraft, etc., since the Euler angles -
P 6,V comspondtothe cmonlyusedpnmeterl qrrou, mtch, and
yav, Tespectively. o g . ;

o

| |
S F
R Ry

B I

1s in R, uadaﬁmthluhrmglutor X as follows: -Iet G -xl-lexf
giO.It;/O,deﬁmtp,a,tby L B

| $
. : R |
vcoso-x9/g, sin @ = xo/t; cos 6 = §, sin 0 = x5 |

eosv?--xl/g, linv-x,/t. ' o - . ‘

e g-o; 80 x?{-L: then a--x,r/a, but ¢ and ¥ mnotmqigly
.determ:lned beingsanectonJytothecmditions eos(x,cp-l-')-x’, |
’sin(x_,q»-i-t)--xz In particular, we may, if we wish, alwvays choose v-o.;
if 6=+ w/2. This determines @ m;qmn,mthensutmgmteu
© are not continuous functions of X. st 6 = + /2. The Euler angles enable '
us to factor X into a product of rotations about the vertical, transverse,
'mmwmsxmmwawpmm, |

rd
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S

1 0 0 cos § 0 -8in @ cos ¥ siny O

I= 0 cos sing | 0 1 0 -ain ¥ }cocv 0o\l.

0 -ciné_ cos 9 sin® 0 cos 9/ \ O 0 2

Ituclsrtmthamgrmglugiveumtmtmathmumm
e:nceptatthepoim g=0, or 0=+ xfe, o |

It X= = 0X, vhere Q 4s as in Sec. 5, thenitilseen‘byd:lncteo-‘
putation that

2 0 -sin @ \ 0\ [
0 com9 singcosolf]é | = o |-

-

0

0 ~8in@® cos § cos O f @y

Since the dsterminant of the matrix on the laft is cos 6, 1t is clearly
singular 1f 0=+7/2, 80 &, §, ¥ are determined only if 6 does not
take on these values. If it 1s known in advance that certain orientaticns
of the rigid body cannct be assumed, then we may be able to choose the orie
gimal coordimate system in such a way that these orientations correspond to

“the singular points. In this case, the Euler angles furnish a satisfactory

method for representing the necessary subset ot Re

A second method of obtaining a Jj-dimensional panmetuution of the
rota.tiongmupuhsedonthemtsthtl)form 3x3 shw-cymstr:lc '
mafrix S, exp 8 horbhogoml,anda)mxvtatimntmutbm
.tialotscmeshw-eymetrl.cntux.

i
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Iet 8 bes 3x3 skev-symmetric matrix, and f--irrsa,
O 2 0. Then the characteristic polyncmial of 8 1s A2 + 02, so
--028 . The power series for X = exp 8 myeomeqmnt]ybesinpnﬁed,

using the relaticns B°° = (-il.)n':l'oa"“’a2 gt . (-1)%"s, and collect-

ing terms, to x-1+'1"3+-1—72°—'—‘—’32 The characteristic roots of

X are 1, cos o +1 8ino. It is not hard to see that upsl exps : t
:lrandon:lyirs-Oandognzh-, ar 8, =8, +2'-'32, for some ine 2

teger X, vhere ci--i!.'raa Inpa.rticuhr,itverestrictonratten—
tiantothoce skev.symmetric mtrieel.s for vhich o & 1w, then

wul %@ua “ﬁmmi-fbl"'s and 0-1-02-'-. _ !

Conversely, let X€R, and let a=TrX, so x’-auz'e-dx-'r-o, :

and dlEas3 Then 153l gy hence there is & unique angls o, by

Ofosw, with coson®3d 1r gf1 5, 126t gaollt2c080) |

o(l + cos ¢
e x-mx"’; If a=3, let s O. Then expf =X, anm

8 18 skev-symetric. If g= -1, then 52 =% (x 19 bas two skewe -
symmetric solutions + 8, and exp § = up(-a) = X, P

Using the correspondence above, we can parametrize the rotation group
by the set of skew-symmetric matrices 8 wvith o S w; every rotation matrix .
" corresponds to at least one skev-symmetric matrix, and those rotations ‘which
are involutions (X is an involution if X2 = I) corre-pond to two skew=
symmetric matrices. .If.we :I.dent:l.fy

.
st

sin o
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viththevector‘a-(nl, 5 .’)" then o'-ll.I, and R 1is seen to
be topologically equivalent to the tall |s| s w with boundary points iden~
m'ougiml differential eqution X = OX 1is transformmed by this

substitution into the eqmticn )
!

Seg- 4(c8 - sn)+(2"’°°t("/"’1)(azn+m -m).

2o?

The derivation of this equation requires some lengthy computations, which are
omitﬁed. Although the mumber of Mu has dbeen reduced to thné, it is

| clear that the form of the trensformed dirferentm'eqmﬁm is cousﬁanhly

more complex tban that of the origimal. Also, the transformed equation bas
a pole at o = 27, Jusbuwwu]dexpecttrmthcmﬁuﬁctthemp X8,
since the set of 8 for vhich - % Tr 62 = Jn? 1s collapeed by the exponan=
$1al map into the identity. | |

The final B-d:l.mensioml paremetrization we shall consider is Ynown
as the Cayley pa.ra.metrization (not to be confused vith the Cayley-Klein
parameters), and also uses 3 X 3 skev-symetric matrices to represent rota«

. tions. If 8 uskev-aymtric,veagnnlet oga-i-l‘rsz, .a.nd.nov

2 82 Then X uortho-
Tr P 1adP
goral, and the characteristic eqution of X is V-t -1=0

(1-424-213).
:n.-n:2
These roots are real only if o = 0, in vhich case all roots are +1., Thus

set X = (I -8)I+8) w2

with a-z—% S0 the camcteristic roots of X are 1,
14+

no rotation matrix haying -1 as an eigenvalue may be 'obbu.:l.ned:mn&m'-
sympetric matrix in this manner, '

”

YR N
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Conversely, if X€ R, and o =Tr X, then, for af <1, set
8= (I -i),(:-rx)""-i—%-;(am-(l»fa)x +X%), 8 1s then skew-symetric,
and this is the inverse of the above correspondence, mrrerenuati_.qﬂnl
last equaticn, substituting X = (X, and sinplifying, ve obtain -
§ =3(s08 - 50 + 08 - 0), & Rlccati mtrix eqution for 8. |
 In this case, if 1t is known beforeband that TrX 18 never -1,
© this paremetrization serves to represent all allowed oriemtaticns.

7. Concluston.

In evluating the usefulness of a paremetrization of R, severmal
factors must be considered. Anong these are 1) the mmber of peremeters
needed, 2) the form of the transformed differemtisl equations, 3)%1» sus-
ceptibility to error of the new equations in machine integration ort these
equations, a.nd k) the ease uith vhich a desired output can be o'bh.mduhnn
these equations are integrated. |

As we have seen, the 6-d.1unsiona1 paremetrization, using the first -
;bm colunns of a rotation matrix to describe it, leads to linear equationms,
and the output 1s in a readily usable form, since X uverysinplyow

froam the given six parameters. _ R

The 5-dimnsiom1 psnmtrization leads to nonlinear equations, a.nd an
undesin.'ble amount of computation is necessary to obtain X as an‘od;m'lt. |
This méthod., vh.ﬂ#ming one less parameter than‘ttn previous method, does
not appear to bhave anythinginmrticula.rto neomnd.it, anditisinchﬂed
only because it uses thas smallest poesible mnber of parameters in a l-l
globtal pmmtﬂntion.




"anmd h-parameter methods, and the Euler angles. A comparison of the adva.i-i

25

The h-dimensional or quaternicn method has the advantages of lead~ e
ing to linear equations while using only one redundant paremeter, and Yew
presenting the most general possible motion of the 'body At the same t:l.lc, :
the coefﬁciexxl;l of X are obtained as qudratic: functions of the coefﬁ.- S
cients of wu. . , : ‘

‘Anu'a.si:ouedm&'c."},m}-dinensiomlpamnetriutionmbeboth ~ ] ‘
global and nonsingular, If the peremetrization 1s glétal, i.e., every rota= .
tion matrix determines some finite values of the paremeters, then there M -
‘bepointswhemthepummetermsmnotmm\nhdeﬁmd, and.i.nthh T
case the derivatives of the parameters are obviously not defined, so the ": SR
transformed differential equations become singular at these poiuts, tiat is, o ;i
the derivatives become infinite, This occurs, for example, with the Euler B
angles and the exponential parametrization. On the other hand, the Cayley . o
rerametrization leads to a well-defined ‘d.trfenntm.eqmticn, being nom- - . - |
singular, but it does not represent any rotation mtrices of trace -1, vhich - .
18 a distinct dlsadvantage, aincetmsnnnotevexiaumlao'. rotations
about a fixed axis. | ) | -

The only commonly used methods among those presemted here are the 6- "

taguammm-ottheumuuaaebyxom@mbhum
cludes that the qmtemon method n the best, at any rate from the ste.ndpod.nt
of amalog codputation, for handling wnrestricted rotations, although the
Euler a.ngles are useful because of their smple interpretations as roll, pitch °
and yaw. That is, the Euler ba.nglea thenselves‘pré':lgla a usable gm,.w
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vith the quaternion method, it 1s necessary to transform the solution to
the rotation group after integrating.
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